Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Applied Sciences ; 13(11):6477, 2023.
Article in English | ProQuest Central | ID: covidwho-20235945

ABSTRACT

This paper presents raw plant materials and their characteristic compounds which may affect the immune system. Plant-derived agents in specific doses affect the body's non-specific, antigen-independent defense system. They have immunostimulatory effects on the entire immune regulatory system. They can enhance the immune response through various factors such as macrophages, leukocytes, and granulocytes, as well as through mediators released by the cellular immune system. This paper was inspired by the threats caused by the COVID-19 pandemic. The proper functioning of the immune system is important in limiting the effects of viral infection and restoring the normal functioning of the body. This paper also emphasizes the importance of the skillful use of plant immunostimulants by potential patients, but also by those who prescribe drugs. It is important not only to choose the right plant drug but above all to choose the correct dose and duration of treatment.

2.
Molecules ; 26(6)2021 Mar 23.
Article in English | MEDLINE | ID: covidwho-1389468

ABSTRACT

Natural products are gaining more interest recently, much of which focuses on those derived from medicinal plants. The common chicory (Cichorium intybus L.), of the Astraceae family, is a prime example of this trend. It has been proven to be a feasible source of biologically relevant elements (K, Fe, Ca), vitamins (A, B1, B2, C) as well as bioactive compounds (inulin, sesquiterpene lactones, coumarin derivatives, cichoric acid, phenolic acids), which exert potent pro-health effects on the human organism. It displays choleretic and digestion-promoting, as well as appetite-increasing, anti-inflammatory and antibacterial action, all owing to its varied phytochemical composition. Hence, chicory is used most often to treat gastrointestinal disorders. Chicory was among the plants with potential against SARS-CoV-2, too. To this and other ends, roots, herb, flowers and leaves are used. Apart from its phytochemical applications, chicory is also used in gastronomy as a coffee substitute, food or drink additive. The aim of this paper is to present, in the light of the recent literature, the chemical composition and properties of chicory.


Subject(s)
Chicory/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antiparasitic Agents/chemistry , Antiparasitic Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Chicory/physiology , Cooking , Food Hypersensitivity/etiology , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Plants, Medicinal/chemistry , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL